
ACM International Collegiate Programming
Contest 2000/2001

Mid-Central European Regional Contest

Albert-Ludwigs University, Freiburg, Germany

November 19th, 2000

This problem set should contain eight (8) problems on thirteen (13)
numbered pages. Please inform a runner immediately if something is

missing from your problem set.

ACM International Collegiate Programming Contest 2000/2001
Mid-Central European Regional Contest

Problem A
Atlantis

Source: atlantis.(c|cc|pas|java)
Input: atlantis.in

There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of
these texts even include maps of parts of the island. But unfortunately, these maps describe different regions
of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered
to write a program that calculates this quantity.

Input

The input file consists of several test cases. Each test case starts with a line containing a single integern
(1� n� 100) of available maps. Then following lines describe one map each. Each of these lines contains
four numbersx1;y1;x2;y2 (0� x1 < x2 � 100000;0� y1 < y2 � 100000), not necessarily integers. The
values(x1;y1) and(x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area.

The input file is terminated by a line containing a single 0. Don’t process it1.

Output

For each test case, your program should output one section. The first line of each section must be “Test
case # k”, wherek is the number of the test case (starting with 1). The second one must be “Total
explored area: a”, wherea is the total explored area (i.e. the area of the union of all rectangles in
this test case), printed exact to two digits to the right of the decimal point.

Output a blank line after each test case.

Sample Input

2
10 10 20 20
15 15 25 25.5
0

Sample Output

Test case #1
Total explored area: 180.00

1We warned you!

1

ACM International Collegiate Programming Contest 2000/2001
Mid-Central European Regional Contest

Problem B
Cog-Wheels

Source: cogwheels.(c|cc|pas|java)
Input: cogwheels.in

Your little sister got a new mechanical building kit, which includes many cog-wheels of different sizes.
She started building gears with different ratios, but soon she noticed that there were some ratios which
were quite difficult to realize, and some others she couldn’t realize at all. Since the most intelligent being
in your family is your computer (as you have always been claiming), now it has to figure out which ratios
are achievable.

There you are! That’s the punishment for bragging about your computer. Now, you must write a
program that will do the job: your sister tells you the sizes of the cog-wheels (the numbers of cogs they
have) in her kit. Then, she tells you the ratios of the gears she would like to build. Your computer has to
decide whether this is possible and, if so, determine how to connect the wheels to obtain the ratio.

Here is an example: let’s assume there are cog-wheels with 6, 12, and 30 cogs. Your sister wants to
realize a gear of ratio 4 : 5. One possible solution is the following:

The picture shows a complete gear of ratio 4 : 5. Four wheels are used:c1 with 12 cogs,d1 with 6 cogs,
c2 with 12 cogs, andd2 with 30 cogs. Note thatd1 andc2 share one axis. In this configuration, ifc1 turns
once,d2 will make 4

5 of a rotation.
On the other hand, no gear of ratio 1 : 6 can be realized using the cog-wheels your sister has.
The picture above can be written as 12 : 6;12 : 30. Each transmission is written asc : d, wherec andd

denote the number of cogs of the two wheels. A list of transitionsc1 : d1;c2 : d2; : : : ;cm : dm means that the
second wheel of each transition is on the same axis as the first one of the next transition (di andci+1 share
one axis for 1� i < m). For those of you who are not good at mechanics: the ratio realized by this gear is

m

∏
i=1

ci

di
:

Input

The input file contains the descriptions of several sets of cog-wheels, each one followed by a list of ratios
to be realized.

2

A set of cog-wheels is described by one line starting with the numbern of sizes of cog-wheels (1�
n� 20). The rest of the line will consist ofn numbersa1; : : : ;an, the numbers of cogs on the wheels. There
will always be at least 5 and at most 100 cogs per wheel. You may assume that your sister has an infinite
supply of wheels of each size.

In your sister’s building kit (and thus, in the input file), the number of cogs on every wheel is divisible
by the number of cogs on the smallest wheel in the kit.

The line describing the set of cog-wheels is followed by a list of ratios to be realized. Each ratio to
be realized is given by one line containing two numbersaj andbj (1� aj ;bj � 10000;aj 6= bj), meaning
aj : bj . The line “0 0” marks the end of that list.

At the end of the input file, there will be a line containing only a zero (instead of the number of cog-
wheels of the next set).

Output

Output one section for each set of cog-wheels. The sections should start with the line “Set # k” wherek
is the number of the set.

Then, output the results for the ratios from the test set. Output exactly one line for each ratio. Each
of these lines should start with “Ratio aj : bj : ”, followed either by “Impossible ” if the ratio cannot
be realized with the given set of cog-wheels, or a description of a gear which realizes the ratio. This
description has to be in the notation described above: a blank-separated list of transitions, each transition
having the form “ci : di”.

The gear does not need to be the smallest possible; we guarantee that if there is a solution then there is
a solution using at most 10000 transitions. Any solution with at most that many transitions is an acceptable
answer.

Every section should be followed by a blank line.

Sample Input

3 6 12 30
4 5
1 6
0 0
0

Sample Output

Set #1
Ratio 4:5: 12:30 12:6
Ratio 1:6: Impossible

3

ACM International Collegiate Programming Contest 2000/2001
Mid-Central European Regional Contest

Problem C
Erdös Numbers

Source: erdos.(c|cc|pas|java)
Input: erdos.in

The Hungarian Paul Erd¨os (1913–1996, pronounced as “Ar-dish”) was not only one of the strangest
mathematicians of the 20th century, he was also among the most famous ones. He kept on publishing
widely circulated papers up to a very high age, and every mathematician having the honor of being a
co-author to Erd¨os is well respected.

Not everybody got a chance to co-author a paper with Erd¨os, so many people were content if they
managed to publish a paper with somebody who had published a paper with Erd¨os. This gave rise to the
so-calledErdös numbers. An author who has jointly published with Erd¨os had Erd¨os number 1. An author
who had not published with Erd¨os but with somebody with Erd¨os number 1 obtained Erd¨os number 2, and
so on. Today, nearly everybody wants to know what Erd¨os number he or she has. Your task is to write a
program that computes Erd¨os numbers for a given set of scientists.

Input

The input file contains a sequence of scenarios, each scenario consisting of a paper database and a list of
names. A scenario begins with the line “p n”, wherep andn are natural numbers with 1� p� 32000;1�
n� 3000. Following this line arep lines containing descriptions of papers (this is the paper database). A
paper is described by a line of the following form:

LastName1, FirstName1, LastName2, Firstname2, . . . : TitleOfThePaper

The names and the title may contain any ASCII characters between 32 and 126 except commas and
colons. There will always be exactly one space character following each comma. The first name may
be abbreviated, but the same name will always be written in the same way. In particular, Erd¨os’ name is
always written as “Erdos, P. ”. (Umlauts like ‘ö’,‘ ä’,. . . are simply written as ‘o’,‘a’,)

Example:

Smith, M.N., Martin, G., Erdos, P.: Newtonian forms of prime factors
matrices.

After the p papers follown lines each containing exactly one name in the same format as in the paper
database.

The line ‘0 0 ’ terminates the input.
No name will consist of more than 40 characters. No line in the input file contains more than 250

characters. In each scenario there will be at most 10 000 different authors.

Output

For every scenario first print the number of the scenario in the format shown in the sample output. Then
print for every author name in the list of names their Erd¨os number based on the papers in the paper
database of the scenario. The authors should be output in the order given in the input file. Authors that do
not have any relation to Erd¨os via the papers have Erd¨os numberinfinity . Adhere to the format shown
in the sample output.

4

Sample Input

2 2
Smith, M.N., Martin, G., Erdos, P.: Newtonian forms of prime factors matrices.
Gardner, M., Martin, G.: Commuting Names
Smith, M.N.
Gardner, M.
0 0

Sample Output

Database #1
Smith, M.N.: 1
Gardner, M.: 2

5

ACM International Collegiate Programming Contest 2000/2001
Mid-Central European Regional Contest

Problem D
Number Game

Source: numbergame.(c|cc|pas|java)
Input: numbergame.in

Christine and Matt are playing an exciting game they just invented: the Number Game. The rules of
this game are as follows.

The players take turns choosing integers greater than 1. First, Christine chooses a number, then Matt
chooses a number, then Christine again, and so on. The following rules restrict how new numbers may be
chosen by the two players:

� A number which has already been selected by Christine or Matt, or a multiple of such a number,
cannot be chosen.

� A sum of such multiples cannot be chosen, either.

If a player cannot choose any new number according to these rules, then that player loses the game.
Here is an example: Christine starts by choosing 4. This prevents Matt from choosing 4, 8, 12, etc.

Let’s assume that his move is 3. Now the numbers 3, 6, 9, etc. are excluded, too; furthermore, numbers
like: 7= 3+4;10= 2 �3+4;11= 3+2 �4;13= 3 �3+4; : : : are also not available. So, in fact, the only
numbers left are 2 and 5. Christine now selects 2. Since 5= 2+3 is now forbidden, she wins because there
is no number left for Matt to choose.

Your task is to write a program which will help play (and win!) the Number Game. Of course, there
might be an infinite number of choices for a player, so it may not be easy to find the best move among
these possibilities. But after playing for some time, the number of remaining choices becomes finite, and
that is the point where your program can help. Given a game position (a list of numbers which are not yet
forbidden), your program should output allwinning moves.

A winning move is a move by which the player who is about to move can force a win, no matter what
the other player will do afterwards. More formally, a winning move can be defined as follows.

� A winning move is a move after which the game position is a losing position.

� A winning position is a position in which a winning move exists. A losing position is a position in
which no winning move exists.

� In particular, the position in which all numbers are forbidden is a losing position. (This makes sense
since the player who would have to move in that case loses the game.)

Input

The input file consists of several test cases. Each test case is given by exactly one line describing one
position.

Each line will start with a numbern (1� n� 20), the number of integers which are still available. The
remainder of this line contains the list of these numbersa1; : : : ;an (2� ai � 20).

The positions described in this way will always be positions which can really occur in the actual Num-
ber Game. For example, if 3 is not in the list of allowed numbers, 6 is not in the list, either.

At the end of the input file, there will be a line containing only a zero (instead ofn); this line should
not be processed.

6

Output

For each test case, your program should output “Test case # m”, wherem is the number of the test
case (starting with 1). Follow this by either “There’s no winning move. ” if this is true for the
position described in the input file, or “The winning moves are: w1 w2 : : : wk” where thewi

are all winning moves in this position, satisfyingwi < wi+1 for 1� i < k. After this line, output a blank
line.

Sample Input

2 2 5
2 2 3
5 2 3 4 5 6
0

Sample Output

Test Case #1
The winning moves are: 2

Test Case #2
There’s no winning move.

Test Case #3
The winning moves are: 4 5 6

7

ACM International Collegiate Programming Contest 2000/2001
Mid-Central European Regional Contest

Problem E
Ouroboros Snake

Source: ouroboros.(c|cc|pas|java)
Input: ouroboros.in

Ouroboros is a mythical snake from ancient Egypt. It has its tail in its mouth and continously devours
itself.

The Ouroboros numbers are binary numbers of 2n bits that have the property of “generating” the whole
set of numbers from 0 to 2n

�1. The generation works as follows: given an Ouroboros number, we place
its 2n bits wrapped in a circle. Then, we can take 2n groups ofn bits starting each time with the next bit in
the circle. Such circles are calledOuroboros circlesfor the numbern. We will work only with the smallest
Ouroboros number for eachn.

Example: forn= 2, there are only four Ouroboros numbers. These are 0011;0110;1100; and 1001. In
this case, the smallest one is 0011. Here is the Ouroboros circle for 0011:

0

0

1

1

k 00110011... o(2;k)

0 00 0
1 01 1
2 11 3
3 10 2

The table describes the functiono(n;k) which calculates thek-th number in the Ouroboros circle of the
smallest Ouroboros number of sizen. This function is what your program should compute.

Input

The input consists of several test cases. For each test case, there will be a line containing two integersn
andk (1� n� 15; 0� k< 2n). The end of the input file is indicated by a line containing two zeros. Don’t
process that line.

Output

For each test case, outputo(n;k) on a line by itself.

Sample Input

2 0
2 1
2 2
2 3
0 0

Sample Output

0
1
3
2

8

ACM International Collegiate Programming Contest 2000/2001
Mid-Central European Regional Contest

Problem F
Fold-up Patterns

Source: patterns.(c|cc|pas|java)
Input: patterns.in

Fold-up patterns for solids like cubes or octahedrons can be found in many books on geometry, but
without actually folding them it is hard to tell whether the constructions really work. In this problem, we
will consider a special class of such patterns.

0 1

10 11

3 4 5 6 7 8 92

1 3

0

2

fold forward

fold back

do not fold

0

1 2 3

4

5

Given a fold-up pattern built from unit squares in the plane, together with a description along what
edges it should be folded in what direction, decide whether it will result in a closed surface of a solid in
three dimensions. If it does, find the volume of the solid.

More precisely, the pattern consists of a connected set of unit squares in the plane. For any edge
between connected sides you are told whether to fold forward, backward (always at a right angle), or not at
all along that edge. If an edge between two adjacent squares in the pattern is not mentioned in the input, you
may assume that the squares are not connected and can be ripped apart when folding. However, connected
edges must always be folded according to the description.

For our purposes a closed surface is one where every square in the pattern separates the inside from
the outside. When folded, the squares of the pattern lie on a rectangular, 3-dimensional grid, and each
separates a cell (cubes of side length one unit) on the inside from one on the outside. For every cell it must
be clear whether it is inside or outside. The following sketch illustrates this rule in two dimensions.

Two closed surfaces Not a closed surface

Note that even the second pattern above satisfies our definition of a closed surface, but the interior is
not connected.

Two different squares may not occupy exactly the same position in space, though they may (and will
for a closed surface) touch at edges and vertices. Make sure that the pattern does not interpenetrate itself
through connected edges. Apart from that, do not worry about the process of folding, e.g. what edges are
folded first or whether part of the structure is in the way for the rest.

9

Input

The input file consists of several test cases.
For each test case, the first line contains two integersn ande. These are the numbern (1� n� 200) of

squares in the pattern and the numbere (0� e� 300) of edges. Squares are labelled by the integers 0 to
n�1. The followinge lines describe one edge each using the four numberss1;s2; p; f :

� The two numberss1 ands2 (with 0� s1 < s2 < n) of the squares that are joined by the edge.

� The positionp of the squares2 with respect to the squares1 in the pattern. Herep= 0;1;2;3 mean
above, to the left, below, or to the right ofs1, respectively (see sketch below).

� The numberf = 0;1;2 tells you to fold along the edge either not at all, forward, or back, respectively
(see sketch).

f=0
f=2

f=1

p=2

p=0

p=3p=1

You can also assume that the pattern is connected and can be drawn in the plane without overlapping.
At the end of the input file, there will be a line containing two zeros (instead ofn ande). Do not process

that line.

Output

For each scenario print “Test case # k: ”, where k is the number of the test case (starting from 1).
Then, on the same line, print either “not a closed surface ” if the pattern does not form a closed
surface or “closed surface, volume= ” and the volume as an integer if it does.

Sample Input

6 5
0 2 2 1
1 2 3 1
2 3 3 1
2 4 2 1
4 5 2 1
5 4
0 2 2 1
1 2 3 1
2 3 3 1
2 4 2 1
0 0

Sample Output

Test case #1: closed surface, volume=1
Test case #2: not a closed surface

5

4

2 31

0

10

ACM International Collegiate Programming Contest 2000/2001
Mid-Central European Regional Contest

Problem G
Railroad

Source: railroad.(c|cc|pas|java)
Input: railroad.in

It is Friday evening and Jill hates two things which are common to all trains:

1. They are always late.

2. The posted schedule is always wrong.

Nevertheless, tomorrow in the early morning hours Jill will have to travel from Tuttlingen to Freiburg
in order to get to the Regional Programming Contest. Since she is afraid of arriving too late and being
excluded from the contest, she is looking for the train which gets her to Freiburg as early as possible.
However, she dislikes getting to the station too early, so if there are several schedules with the same arrival
time, she will choose the one with the latest departure time.

Jill asks you to help her with her problem, so that she can sleep a bit longer tomorrow. You are given
a set of railroad schedules from which you have to compute the fastest connection among those with the
earliest arrival time for going from one location to another. One good thing: Jill is very experienced in
switching trains: she can do this instantaneously, i.e., in zero time!!!

Input

The input file contains several scenarios. Each of them consists of three parts.
Part one lists the names of all cities connected by the railroads. It starts with a line containing an integer

C (1�C� 100) followed byC lines containing city names. These names consist of letters.
Part two describes all the trains running during the day. It starts with a numberT � 1000 followed by

T train descriptions. Each train description consists of one line with a numberti � 100 andti more lines
with a time and a city name, meaning that passengers can get on or off the train at that time at that city. The
times are given in the 24-hour formathhmm.

Part three consists of three lines: Line one contains the earliest possible starting time for the journey,
line two the name of the city where she starts, and line three the destination city. The two cities are always
different.

The end of the input file is marked by a line containing only a zero (instead ofC). Do not process this
line.

Output

For each scenario print the line “Scenario # n” wheren is the number of the scenario starting at 1.
If a connection exists then print the two lines containing zero padded timestamps and locations as

shown in the sample output. Use blanks to achieve the indentation. If no connection exists on the same day
(i.e., arrival before midnight), then print a line containing “No connection ”.

After each scenario print a blank line.

11

Sample Input

3
Tuttlingen
Constance
Freiburg
3
2
0949 Tuttlingen
1006 Constance
2
1325 Tuttlingen
1550 Freiburg
2
1205 Constance
1411 Freiburg
0800
Tuttlingen
Freiburg
2
Ulm
Vancouver
1
2
0100 Ulm
2300 Vancouver
0800
Ulm
Vancouver
0

Sample Output

Scenario #1
Departure 0949 Tuttlingen
Arrival 1411 Freiburg

Scenario #2
No connection

12

ACM International Collegiate Programming Contest 2000/2001
Mid-Central European Regional Contest

Problem H
Smith Numbers

Source: smith.(c|cc|pas|java)
Input: smith.in

While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,
noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The
sum of the digits of that number was equal to the sum of the digits of the prime factors of that number. Got
it? Smith’s telephone number was 493-7775. This number can be written as the product of its prime factors
in the following way:

4937775= 3 �5 �5 �65837

The sum of all digits of the telephone number is 4+9+3+7+7+7+5= 42† , and the sum of the digits
of its prime factors is equally 3+5+5+6+5+8+3+7= 42. Wilansky was so amazed by his discovery
that he named this kind of numbers after his brother-in-law: Smith numbers.

As this observation is also true for every prime number, Wilansky decided later that a (simple and
unsophisticated) prime number is not worth being a Smith number, so he excluded them from the definition.

Wilansky published an article about Smith numbers in theTwo Year College Mathematics Journaland
was able to present a whole collection of different Smith numbers: For example, 9985 is a Smith number
and so is 6036. However, Wilansky was not able to find a Smith number that was larger than the telephone
number of his brother-in-law. It is your task to find Smith numbers that are larger than 4937775!

Input

The input file consists of a sequence of positive integers, one integer per line. Each integer will have at
most 8 digits. The input is terminated by a line containing the number 0.

Output

For every numbern> 0 in the input, you are to compute the smallest Smith number which is larger thann,
and print it on a line by itself. You can assume that such a number exists.

Sample Input

4937774
0

Sample Output

4937775

† What else did you expect???

13

